COM320 Lab — Hacksplaining & Linux Introduction

Professor Kevin Curran

Contents

O 5 T LYo 1 1TV
2. LINUX ENVIrONMENT BASICS ..cecuuuuiiiieeeniiiereimniiireeneneereennsseeseeensssesssenssssessennsssssssensssssseensssssssesnssssssssnnssssssennnns
2.1 Finding your way around Linux
2.2 LiNUX BASIC & LINUX SEIVICES ... eiiiiiieee e ettt e e e eeecttte e e e e e e sttt e e e e e e e s e e aabaeseeaeeeeseasbaaseaaaeesaassssennsaaeseanansees
2.2.1 LiNUX DASIC COMMANTS ..eeciiiiieiciiie et e ettt et e e ettt e e e e te e e e ettt e e e e taeaeeeabaeeeesaseaesabaseeaassaeeeanssaaeeasraeasanes
2.2.2 TeXt VIEWETS @Nd @AITOISeiiiciiiieciiee ettt ettee e ettt e e ettt e e e ettt e e e e e baeeeeetaeeeesabaeeeesssaeeeansssaeensreeananes 7

1. Hacksplaining

1. Visit https://www.hacksplaining.com/lessons (register for free account if needed)

Al: Bias and Unreliability Al: Prompt Injection Al: Data Extraction Attacks
Machine learning is prone to bias and Prompt injection represents an easy Your machine learning model may be
unreliability, and you need to put in way for an attacker for an attacker to leaking sensitive data without you

safeguards to protect against that. introduce unexpected behavior in a knowing it.

machine learning model.

Learn About This Vulnerability - Learn About This Vulnerability > Learn About This Vulnerability =

2. Complete the three Al vulnerabilities which are Al: Bias and Unreliability, Al: Prompt Injection and Al:
Data Extraction Attacks.

https://www.hacksplaining.com/lessons

2. Linux Environment Basics

This part prepares you for some of the modules to come, which heavily rely on proficiency with the basic usage
of Linux.

Lab Objectives:

1. Overview of Linux including basic file manipulation and movement within the shell.
2. Basic proficiency of the Linux Bash Shell, Text manipulation and Bash Shell scripting.
3. Knowledge of Cross-Site Scripting

2.1 Finding your way around Linux

1. Launch Linux from by visiting https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192

C m 25 bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192
aa ® N O &% &~ % 4+ B 9 ? B [M 8 & & o

elcome to JS/Linux (i586)

Use 'vflogin username' to connect to your account.

ou can create a new account at https://vfsync.org/signup .
Use 'export_file filename' to export a file to your computer.
Imported files are written to the home directory.

localhost:~#

You should now be logged into a 'portable' free online Linux version called Alpine. Alpine Linux is an
independent, non-commercial, general purpose Linux distribution designed for power users who appreciate
security, simplicity and resource efficiency.

Linux is an open-source operating system first developed by Linus Torvalds in 1991. Unlike proprietary systems
like Windows or macOS, Linux’s source code is freely available, allowing anyone to modify and distribute it. This
openness has led to a vast ecosystem of distributions (or "distros") like Ubuntu, Fedora, and Alpine, each tailored
to specific needs. Linux powers a wide range of devices, from servers and supercomputers to smartphones and
embedded systems.

Its popularity comes from several strengths: it is free, highly customisable, and known for stability and security.
The global community of developers continuously improves it, making it a reliable choice for both hobbyists and
enterprises. Linux also excels in performance, running efficiently on everything from old hardware to cutting-
edge systems, which explains its widespread adoption across industries.

https://bellard.org/jslinux/vm.html?url=alpine-x86.cfg&mem=192

2.2 Linux Basic & Linux Services

The default shell used by Alpine Linux is the BusyBox variant of the ash shell. A shell is a computer program that
serves as an interface for users to interact with an operating system, allowing them to execute commands and
control the computer's functions. While the term "shell" can also refer to the hard outer covering of an animal,
nut, or egg, in the context of computing, it is the layer of software that provides access to the operating system's
services, either through a command-line interface (CLI) or a graphical user interface (GUI).

BusyBox is a command processor (shell) that typically runs in a text window where the user types commands
that cause actions. The shell can also read and execute commands from a file, called a shell script. Like all Unix
shells, it supports filename globbing (wildcard matching), piping, here documents, command substitution,
variables, and control structures for condition-testing and iteration. The keywords, syntax and other basic
features of the language are all copied from sh. Other features, e.g., history, are copied from csh and ksh.

The following part will cover some of the basic tools we will be working with regularly - proficiency with them
will be assumed. The shell (or any other shell for that matter) is a very powerful scripting environment. On many
occasions we need to automate an action or perform repetitive time-consuming tasks. This is where bash
scripting comes in handy.

2.2.1 Linux basic commands

Type the commands in red & black below. The blue text with symbol # is simply comments on some commands
to show you what is happening. Just type the commands in red.

pwd # print working directory

localhost:~# pwd
/root

localhost:~# J§

mkdir mydir # make a new directory, mydir

localhost:~# pwd

/root

localhost:~# mkdir mydir
localhost:~# |

cd mydir # move into the /mydir directory

localhost:~# cd mydir
localhost:~/mydir#

pwd # now you are in ~/mydir

localhost:~/mydir# pwd

/root/mydir
localhost:~/mydir#

touch myfile # create a blank file called myfile

loéélhos£:~/mydir# touch myfile

localhost:~/mydir#

Is myfile # list any file with name ‘myfile’

localhost:~/mydir# 1ls myfile
myfile
localhost:~/mydir#

Is -alrth myfile # list metadata on myfile

localhost:~/mydir# 1s —-alrth myfile
—rW—r——r—— 1 root root @ Sep 15 16:30 myfile
localhost:~/mydir#

echo >> myfile # append via ’>>’ to a file

localhost:~/mydir# echo "1linel" >>myfile
localhost:~/mydir# |

cat myfile # Display the contents of myfile

localhost:~/mydir# cat myfile
linel
localhost:~/mydir# |

echo >> myfile

localhost:~/mydir# echo "1line2" >> myfile
i~/mydir#

cat myfile # Display the contents of myfile

i~/mydir# cat myfile

i~/mydir#

localhost:~/mydir# cd ..
localhost:~# J§

Pwd # print working directory

localhost:~# pwd

/root
localhost:~# |}

cd mydir # move to mydir directory

localhost:~# cd mydir
localhost:~/mydir#

cp myfile myfile2 # copy file into a new file

localhost:~/mydir# cp myfile myfile2
localhost:~/mydir#

cat myfile2 # Display contents of the newly created myfile2

localhost:~/mydir# cat myfile2
linel

line2

localhost:~/mydir# |

Is -alrth myfile2 myfile # list metadata on myfile & myfile2

localhost:~/mydir# 1s —alrth myfile2 myfile

—rW—r——r—— 1 root root 12 Sep 15 16:35 myfile
—rW=r=—r—— 1 root root 12 Sep 15 16:39 myfile2
localhost:~/mydir#

rm -i myfile2 # type y to confirm deletion and hit enter

ocalhost:~/mydir# rm -i myfile2
m: remove 'myfile2'? y
ocalhost:~/mydir#

cd.. # move back to root directory

localhost:~/mydir# cd ..
localhost:~#

rmdir mydir # won’t work because there’s a file in there

localhost:~# rmdir mydir
rmdir: 'mydir': Directory not empty

localhost:~#

rm -rf mydir # VERY dangerous command, use with caution

localhost:~# rm -rf mydir
localhost:~#
Is #Is is list files in a directory. Not you will see that myfile and myfile2 are deleted as is mydir directory

localhost:~# 1s

bench.py hello.c hello.js readme.txt
localhost:~#

This should give you an intuitive understanding of how to navigate between directories (cd), print the current
working directory (pwd), print the contents of files (cat), list the contents of directories (ls), copy files (cp),
rename files (mv), list files (Is), move files (mv again), and remove files and directories (rm).

2.2.2 Text viewers and editors

In the next part, you will create a file. If you wish to view or edit files in Linux, there are a number of quick
methods. This page is for users unfamiliar with text editors on the Linux platform. Feel free to skip if you wish.

Nano Text Editor

Nano is possibly the simplest way to edit a file for the rest of this course but we look at vi below as well. To
create a new file.

in the terminal type:

nano testfile

localhost:~# nano testfile

This will then open the nano text editor. Here you can enter any sample line of test you wish as shown next.

GNU nano 4.9.3 testfile

[New File 1
€ Get Help (6] Write Out il BE] Justify
Read File ml Paste Textg To Spell Go To Line

Enter the following line:

Test line of code.

GNU nano 4.9.3
est line of code.

testfile Modified

Save modified buffer?
Y]

To save and exit, type CTRL + X. You then type Y to confirm saving and exiting.

Save modified buffer?

 #

If you do a list command s, you will see the file has been created.

Is # list the files in current directory.

localhost:~# 1s

bench.py hello.c hello.js readme.txt testfile
1qcalhost:~#

File Viewer — cat

cat is a simple little program that displays the contents of a text file when you give the file name as an argument
toit:

localhost:~# cat testfile

You will see the file contents displayed.

localhost:~# cat testfile

est line of code.
i~

A

This is a nice way of viewing short files that fit on your screen, but if the file is so long that its contents cannot
be displayed on your screen all at once, you will end up only staring at the end of the file. Maybe not exactly
what you want. In most cases, you will want to use less instead.

File Viewer — less

less is a program that lets you view text files, like cat does, but if the files are so long that they don't fit on your
screen, less automatically paginates the file. You use less by giving the file name as an argument to it:

localhost:~# less testfile

This allows you to more easily control scrolling through large files.

est 1line of code.

When viewing the file, you can use Page Up and Page Down keys to move through the file.

Typing q will exit.
You can also open several files at the same time so you can navigate from one file to next without closing it first.

To test this, we will create a second file. Let us do that the lazy way by ‘piping’ the output of the ‘list files’
command to a file called testfile 2 by typing the following:

Is > testfile2

localhost:~# 1s > testfile2
localhost:~#

So, if you want to open several files, just give all the file names at once:

less testfile testfile2.

localhost:~# less testfile testfile2

You will then see the following.

est 1line of code-

To see the testfile2 contents, type :n (note that is a colon followed by n)

To move back to the testfile contents, type :p (This stands for the previous file.)
To quit type :q

‘q

10

Text Editor — vi

Nano is a simple text editor, but hard-core Linux users adore vi. viis generally considered the de facto standard
in Unix editors because:

e [tis usually available on all the flavours of Unix system.
e Itsimplementations are very similar across the board.
e Itrequires very few resources and is more user-friendly than other editors such as the ed or the ex.

You can use the vi editor to edit an existing file or to create a new file from scratch. You can also use this editor
to just read a text file. An improved version of the vi editor which is called the VIM is what we actually use.

While working with the vi editor, we usually come across the following two modes -

Command mode - This mode enables you to perform administrative tasks such as saving the files, executing the
commands, moving the cursor, cutting (yanking) and pasting the lines or words, as well as finding and replacing.
In this mode, whatever you type is interpreted as a command.

Insert mode — This mode enables you to insert text into the file. Everything that's typed in this mode is
interpreted as input and placed in the file.

vi always starts in the command mode. To enter text, you must be in the insert mode for which simply type i. To
come out of the insert mode, press the Esc key, which will take you back to the command mode. Hint - If you
are not sure which mode you are in, press the Esc key twice; this will take you to the command mode. You open
a file using the vi editor. Start by typing some characters and then come to the command mode to understand
the difference.

To Start vi

To use vi on a file, type:

vi testfile

localhost:~# vi testfile

The first page (or screen) of the file will be displayed; if the file does not exist, then an empty file and screen are
created into which you may enter text. It should appear as follows:

est line of code.

To Exit vi

Usually the new or modified file is saved when you leave vi. However, it is also possible to quit vi without saving
the file.

Note: The cursor moves to bottom of screen whenever a colon (:) is typed. This type of command is completed
by hitting the <Return> (or <Enter>) key.

:x<Return> quit vi, writing out modified file to file named in original invocation
:wqg<Return> quit vi, writing out modified file to file named in original invocation
:q<Return> quit (or exit) vi

:ql<Return> quit vi even though latest changes have not been saved for this vi call

11

